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Unsteady natural convection in a reservoir model subject to constant cooling at the water surface is con-
sidered in this paper. In such a case, the unequal heat loss resulting from a varying water depth creates a
horizontal temperature gradient which in turn drives a horizontal exchange flow between the coastal
region and the main water body of the reservoir. Understanding of the flow mechanisms pertinent to this
flow is important for predicting the transport of nutrients and pollutants across the reservoir.

The present numerical simulations impose random perturbations at the water surface in order to trig-
ger flow instabilities. First, numerical tests are carried out to investigate the flow response to different
perturbation amplitudes. These tests reveal a linear range of the flow response to the perturbations. Sub-
sequently, the transient flow development at different stages is described in details based on numerical
data, and the effects of the Grashof number on the unsteady flow are examined.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction review of dynamical processes pertinent to lakes and reservoirs
Diurnal heating and cooling of the sidearms of lakes and reser-
voirs with gently sloping bottoms may result in large scale convec-
tive circulations. Typically the input of solar radiation through the
water surface in the day-time results in relatively warm shallow
regions. The absorption of solar radiation decreases with the water
depth, and thus a stable stratification is established in the water
body. In shallow waters, the water depth is smaller than the pen-
etration depth of solar radiation, and the radiation reaches the bot-
tom where the residual radiation is absorbed and then re-emitted
into the water layer above the bottom. This bottom heating works
as a destabilizing mechanism, which competes with the stable
stratification. Conversely, night-time cooling through the water
surface results in relatively cool shallow regions and distinct
near-shore horizontal temperature gradients because the shallow
regions cool relatively faster than deeper regions. As a result, a cold
water undercurrent is created which proceeds toward the deeper
regions along the bottom. At the same time, cooling at the water
surface may generate instabilities in the form of plunging thermals
originating from the surface. In natural systems, all the above-
mentioned mechanisms work together in a complex way over
diurnal cycles. The convective motions generated in these ways
influence the transport of nutrients and pollutants or dissolved
constituents between the near-shore and central regions of the
water body, and thus may play a central role in determining the
water quality, along with a range of other processes. A broad
ll rights reserved.
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can be found in Imberger and Patterson [1].
In recent years, the convective transport mechanisms arising

from these diurnal heating and cooling cycles have attracted signif-
icant attention from researchers, and many reports on topics of
horizontal exchange flows can be found in the literature [2–6].
However, previous investigations are limited in general to simple
geometries such as a triangular cavity, which is a poor representa-
tion of real systems, although the triangular cavity is a good start-
ing point for further investigations.

Horsch and Stefan [7] and Horsch et al. [8] studied numerically
and experimentally the night-time cooling phase in a triangular
cavity with a constant heat flux at the top surface. They found that
the flow in the initial stage consisted of a number of re-circulating
regions associated with sinking cold-water plumes. At the same
time, they observed a gravity current of cold water emerging from
the tip region and flowing downwards along the sloping bottom.
After a sufficient period of time, the gravity current (undercurrent)
travelled the full length of the domain to create a cell-like convec-
tive circulation in the entire cavity. The effect of topography with a
decreasing water depth on the distribution of an originally uniform
incoming heat flux was reported by Adams and Wells [9] and Mon-
ismith et al. [10], based on their field observations. They were able
to measure the velocities associated with the surface outflow of
warm water from the edges of reservoir sidearms, which were of
the order of 5 cm/s. Their observations are consistent with the
recent numerical simulations of flow responses to periodic heating
and cooling by Lei and Patterson [11], which generally showed a
time lag in the overall flow response when the thermal forcing is
switched between heating and cooling. The analyses carried out
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Nomenclature

A aspect ratio, A = H/L
As bottom slope, As = H/Ls

Cp specific heat (J/kg K)
g acceleration due to gravity (m/s2)
Gr Grashof number, Gr = gbH0H4/(m2k)
H maximum water depth (m)
H0 volumetric cooling intensity at the surface (mK/s),

H0 = I0/(q0Cp)
I0 rate of heat loss at water surface (W/m2)
k thermal diffusivity (m2/s)
L length of the model (m)
Ls horizontal length of the slope (m)
n coordinate normal to the bottom (m)
p pressure (N/m2)
Pr Prandtl number, Pr = m/k
Ra Rayleigh number, Ra = GrPr
RaL local Rayleigh number

Q, Qm exchange flow rates
t time (s)
tB onset time of instabilities (s)
T temperature (K)
T0 reference temperature (K)
~u velocity (m/s)
u and v velocity components in x and y directions (m/s)
x and y coordinates in horizontal and vertical directions (m)

Greek symbols
b coefficient of thermal expansion (1/K)
e intensity of perturbations
k thermal conductivity (W/mK)
m kinematic viscosity (m2/s)
q0 density (kg/m3)
sdev standard deviation of the temperature
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by Farrow and Patterson [12], Farrow [13] and, Lei and Patterson
[11] revealed that, during both the cooling and heating phases,
thermal instabilities break the residual circulation and reverse
the flow in deep waters. Lei and Patterson [2] also considered the
convective circulations in a triangular geometry generated by
surface cooling, and presented a scaling analysis revealing three
laminar flow regimes, namely conductive, transitional and convec-
tive regimes, depending on the Rayleigh number. Their numerical
simulations verified their scaling predictions. Earlier the same
authors [3,4] also studied the effect of day-time heating-induced
natural convection in a shallow wedge.

As mentioned above, all of the reviewed works, except those in
[6,11], were confined to a triangular cavity, which is a poor geo-
metric representation of real systems. The present numerical
investigation extends those works with the addition of an adjacent
region of uniform water depth, which, despite still being a signifi-
cant simplification of real systems, is a more realistic model than a
simple triangular cavity. The cooling case is reinvestigated in this
model. In the following, the methodology of triggering initial flow
instabilities is presented; numerical results describing the flow
development are described in detail; and a scaling prediction of
the onset time of instability is derived.
2. Numerical model

Fig. 1 shows a two-dimensional (2D) reservoir model consisting
of two distinct regions: one with a sloping bottom and the other
with a uniform water depth. The dimensions of the numerical
model are chosen to correspond to those of a laboratory reservoir
model. The total length of the model is L = 2 m with a maximum
water depth of H = 0.1 m and a slope inclination of A = 0.1. A Carte-
sian coordinate system is adopted with the origin located at the tip
Fig. 1. Schematic of the cons
of the reservoir model (see Fig. 1). Previous investigations showed
that 2D numerical simulations can reproduce the major flow
features despite the three-dimensional (3D) nature of the flow
with the presence of flow instabilities [2].

The flow and temperature fields in the reservoir model are gov-
erned by equations of continuity (1), momentum (2), and energy
(3) given below:

r �~u ¼ 0 ð1Þ
D~u
Dt
¼ � 1

q0
rpþ mr2~uþ gbðT � T0Þ

0
1

� �
ð2Þ

DT
Dt
¼ kr2T ð3Þ

where~u is the fluid velocity vector, t is the time, p is the pressure, T
is the temperature, q0 is the density at the reference temperature
T0, k is the thermal diffusivity, g is the gravitational acceleration, b
is the thermal expansion coefficient, and m is the kinematic
viscosity.

The boundary conditions are defined as follows:

� On the sloping and horizontal bottoms, rigid non-slip wall bound-
ary conditions apply (~u ¼ 0). These walls are also thermally insu-
lated (oT/on = 0, where n is the direction normal to the wall).

� The deep-end vertical wall is also adiabatic (oT/ox = 0), rigid, and
non-slip (~u ¼ 0).

� The tip is cut off at x = 0.016 m in order to avoid a singularity,
and an extra rigid non-slip (~u ¼ 0) and adiabatic (oT/ox = 0)
boundary is assumed there.

� The water surface is assumed to be stress free (v = 0 and
ou/oy = 0, where u and v denote, respectively, the horizontal
and vertical components of the velocity). The thermal boundary
condition at the water surface is given by:
idered reservoir model.
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oT
oy
¼ �H0

k
þ e � ½randomð0;1Þ � 0:5� � H0

k
ð4Þ

In the above equation, the quantity H0 is given by H0 = I0/(q0Cp),
where I0 is the rate of heat loss per unit surface area, and Cp is
the specific heat evaluated at the reference temperature T0. The
second term on the right-hand side of Eq. (4) represents a random
heat flux perturbation at the water surface, with e specifying the
intensity of perturbations, and random(0,1) generating a random
number between 0 and 1 [14]. The perturbations to the surface
boundary condition are necessary for the investigation of the
onset of plunging surface plumes, as discussed below.

At the initial state the fluid is stationary (~u ¼ 0) with a uniform
temperature of T0 = 293.15 K across the whole computational
domain.

The present work is concerned with unsteady natural convec-
tion in the reservoir model. For easier characterization of such
flows, four non-dimensional parameters are used herein (Prandtl
number, Grashof number, the aspect ratio, and the bottom slope).
They represent the important properties of the fluid, the thermal
forcing, and the geometry. The first parameter (Prandtl number)
describes the relative strength of the diffusion of momentum to
that of heat:

Pr ¼ m
k
: ð5Þ

The second parameter (Grashof number) expresses the ratio of
buoyancy forces to viscous forces and is defined as follows:

Gr ¼ gbH0H4

m2k
¼ Ra

Pr
; ð6Þ

where Ra is the Rayleigh number. The third parameter denotes the
aspect ratio which defines the geometry of the cavity:

A ¼ H
L
¼ 0:05: ð7Þ

and the last parameter is the bottom slope which characterizes the
inclination of the slope:

As ¼
H
Ls
¼ 0:1: ð8Þ

For our computed cases with water as the medium, the Prandtl
number takes a constant value of Pr = 7.07; and A and As are both
constant for all computations. The numerical simulations are there-
fore carried out for different Grashof numbers (Gr = 104, 105, 106,
107, and 5 � 107) in order to examine how the flow responds to dif-
ferent strengths of surface cooling.

To describe the horizontal exchange flow across a vertical sec-
tional plane at a given x location, a (two-dimensional) volumetric
flow rate Q(x) is defined as [2,8]

QðxÞ ¼ 1
2

Z 0

�hx

jujdy; ð9Þ

where hx is the local water depth. An averaged volumetric flow rate
Qm is obtained by integrating Q(x) along the horizontal x-direction
as follows:

Q m ¼
1
L

Z L

0
QðxÞdx ð10Þ

Eqs. (1)–(3) are numerically solved using a finite volume method
[15]. A second-order time-accurate formulation is employed in all
subsequent computations, and the pressure–velocity coupling is
carried out using the SIMPLE method [15,16] with the convective
term discretised using a second-order upwind scheme and the dif-
fusion term discretised using a second-order central-differenced
scheme. A non-uniform grid system is constructed with finer grids
distributed in the vicinity of all the wall boundaries, close to the tip
region and in the region where the slope finishes. The number of
nodes was chosen to be 861 � 51 after a grid-dependency test
was carried out (described in Section 4). Additionally, the working
fluid (water) is assumed to be incompressible and Newtonian, and
the Boussinesq approximation is employed in the present modeling.
All results reported in this paper are performed using a double
precision solver.

3. Random perturbation tests

The specification of surface cooling suggests that the configura-
tion is potentially unstable in a Rayleigh–Benard sense. To trigger
an instability a perturbation to a base flow state is required. In gen-
eral, numerical experiments require a small random perturbation
to be applied to the base flow to ensure a random production of
instabilities, and a common method of introducing this is to apply
small perturbations to one of the boundary conditions [17,18]. In
this case, the perturbation was applied to the surface heat flux,
as specified in Eq. (4) above. The response of the system to differ-
ent amplitudes of the heat flux perturbation applied at the water
surface is examined. Computations are carried out for Pr = 7.07,
Gr = 107, and e = 0.5%, 1.0%, 1.5%, 2.0%, 3.0%, and 4.0%, respectively.
The test is concerned with the initial stage of the flow development
only, in which instabilities take place.

The system response to the perturbations is well represented by
time series of the standard deviation of the temperature taken di-
rectly from the area below the water surface at y = �0.001 m. How-
ever, only temperatures in the deep-water region (for x > 1.0 m)
are included in the calculation of the standard deviation due to
the strong conduction effect in the area close to the tip.

Fig. 2a shows the horizontal temperature profiles taken below
the water surface (y = �0.001 m) for three sample perturbation
amplitudes (e = 0.5%, 2%, and 4%, respectively) and at t = 130 s
when the instabilities are well-established. It can be clearly seen
in Fig. 2a that the temperature profiles show clear wave-like char-
acteristics and some irregularities, and the temperature profiles
obtained with different perturbation amplitudes follow the same
pattern. Also it can be observed that different perturbation
strengths result in different amplitudes of the temperature re-
sponses. In Fig. 2a, all the temperature profiles are plotted for the
range of x P 0.75 m. It is clear in this figure that, in the region
above the slope, the fluid is cooler than the fluid in the deep region
with a constant water depth.

At the early stage of the flow development, heat conduction
through the water surface creates a thermal boundary layer under
the surface, which is later broken by the instabilities in the form of
sinking plumes (if the cooling is sufficiently strong). The present
tests are concerned with the very early stage of the flow develop-
ment in order to predict the onset time of the convective instabil-
ities. As mentioned previously, the growth of the perturbations is
well represented by the standard deviation of the temperatures ta-
ken at y = �0.001 m for x > 1.0 m, in which region the average fluid
temperature is at the same level at a specific time. Fig. 2b shows
the temperature responses to different amplitudes of the perturba-
tion (e = 0.5%, 1.0%. 1.5%. 2.0%, 3.0%, and 4.0%) plotted on a logarith-
mic scale. Four distinct regions can be recognized in the time
histories of the temperature standard derivation in this figure: a
constant-response region, a transitional region in which the onset
of instabilities can be recognized, an exponential-growth region
(the linearly increasing section in the logarithmic plot), and a re-
gion following the exponential growth region with a peak in the
growth curve. In fact, all these four regions belong to the initial
flow development stage, which will be described (for the whole
computational domain) later in this paper.
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Fig. 2. Temperature responses to different perturbation amplitudes at Pr = 7.07 and Gr = 107. (a) The temperature profiles taken at y = �0.001 m at the time t = 130 s; (b) time
series of the standard deviation of the temperature at y = �0.001 m and x > 1.0 m.
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As seen in Fig. 2b, at the very early stage of cooling, the standard
derivation of the temperature stays at a constant level. At this
stage, the thermal boundary layer grows and remains stable. The
low, but non-zero value of the standard deviation at this stage is
an indication of the system response to the random perturbations.
At a certain stage (around t = 80 s) the system response starts to in-
crease, indicating the onset of instabilities. Between t = 130 and
150 s, the standard deviation of the temperature grows exponen-
tially (represented by the straight lines in the logarithmic scale),
which can be expressed by:

sdev ¼ a exp c t � tBð Þ½ � ð11Þ

where a is the amplitude, c is the growth rate, and tB is the critical
time for the onset of instability. All these quantities can be deter-
mined from the time series of the temperature standard deviation
shown in Fig. 2b. In the linear exponential growth region, the fol-
lowing relation is observed: if the amplitude of perturbation dou-
bles, the temperature standard deviation sdev also increases by
about two times at any specific time between t = 130 and 150 s.

The next region following the exponential growth region is
characterized by the presence of a distinct peak on the growth
curves. The peak occurs at the moment when the water directly be-
low the surface becomes sufficiently dense so that sinking ther-
mals are released locally from the thermal boundary layer.
Fig. 2b shows that, the stronger the perturbations, the earlier the
peak appear.
The onset time of the instabilities tB is estimated as the time
when the forward extended constant-response line meets the
backward extended exponential growth line, as marked by the dot-
ted lines in Fig. 2b. The computed numerical values of a, c, tB, and
sdev at t = 130 and 150 s are collected in Table 1. As seen, there is a
slight variation of the growth rate, c, and the onset time of the
instabilities, tB, with the amplitude of the perturbation, and they
both decrease with the increase of e. The maximum variation of
the growth rate is 3.81% for the parameters examined here. This
variation is insignificant for the specified range of the amplitude
of perturbations, and therefore the growth rate may be treated as
a constant. Furthermore, the system responds in a linear way and
the perturbation amplitudes do not change the stability properties
(such as the onset time and growth rate) of the flow. Therefore, the
applied perturbations have successfully triggered the instabilities
without altering the basic properties of the flow.

4. Grid-dependency tests

A grid-dependency test was carried out to ensure the accuracy
of the numerical solutions. The averaged volumetric flow rate Qm

was chosen for comparison purposes. Three different non-uniform
meshes 431 � 26, 861 � 51 and 1281 � 76 were tested to check
the dependence of the numerical solutions on the grid resolution
at the highest Grashof number Gr = 5 � 107 and Pr = 7.07. All cases
gave similar results in terms of the flow response. Fig. 3 shows the



Table 1
Flow responses and the onset time of instabilities obtained with different perturbation strengths

e e = 0.5% e = 1.0% e = 1.5% e = 2.0% e = 3.0% e = 4.0%

sdev, 130 s 3.50 � 10�4 7.31 � 10�4 1.13 � 10�3 1.55 � 10�3 2.39 � 10�3 3.17 � 10�3

sdev, 150 s 1.69 � 10�3 3.49 � 10�3 5.37 � 10�3 7.26 � 10�3 1.10 � 10�2 1.44 � 10�2

a 1.25 � 10�8 2.77 � 10�8 4.55 � 10�8 6.62 � 10�8 1.14 � 10�7 1.66 � 10�7

c 0.0787 0.0782 0.0778 0.0773 0.0765 0.0757
tB 101.209 100.461 99.850 99.331 98.634 98.248
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time histories of the averaged volumetric flow rates at Gr = 5 � 107

obtained with the three meshes. Here, and in Fig. 11 to be pre-
sented later, the flow rate is normalized using the scale �k. The
plot in Fig. 3 clearly shows that the overall flow development is
comprised of three distinct stages, that is, an early stage with the
volumetric flow rate increasing steadily, a transitional stage with
the volumetric flow rate continuing to increase but subject to fluc-
tuations, and a quasi-steady stage with the volumetric flow rate
fluctuating about a constant mean value. It is seen that, at the very
early stage, all the three solutions with different meshes are coin-
cident. Subsequently, due to instabilities arising in the form of ran-
domly distributed sinking plumes which are very sensitive to the
grid resolution, the numerical solutions with different meshes start
to diverge from each other during the transitional stage. However,
the characters of the time series are very similar. Eventually, the
flow becomes quasi-steady, which is evidenced by the oscillations
Table 2
Computed time-averaged integrated horizontal flow rate in the quasi-steady stage
with different meshes

Mesh Mesh size Maximum variation

431 � 26 861 � 51 1291 � 76

Average, Qm 537.64 535.28 528.08 1.78%

Table 3
Results of the mesh-dependency test for Gr = 107 and Pr = 7.07

Mesh number: 1
Mesh size: 431 � 26

Predicted time for the onset of instability 100.902
Growth rate of the standard deviation 0.0765
of the averaged volumetric flow rate seen in Fig. 3. The flow in the
quasi-steady stage retains almost the same structure over time,
being only disturbed intermittently by the plunging thermals (re-
fer to Section 5.3). The time-averaged volumetric flow rates at
the quasi-steady state are compared in Table 2 for all three meshes
tested. It is understood that the time-averaged quantity is very
sensitive to the time period over which the volumetric flow rate
is averaged, because even though the response is quasi-steady,
there is some randomness in the occurrence of the plumes. This
factor may have directly contributed to the relatively large varia-
tion of the solution with the finest mesh from the other two solu-
tions. Nevertheless, the variation of the calculated time-averaged
volumetric flow rate between the two fine meshes is less than
1.4% for Gr = 5 � 107.

Table 3 gathers quantitative data of the stability properties
obtained with the three different meshes at Gr = 107, for which
random perturbations tests were carried out above. It is seen that
the predicted values of the quantities vary from mesh to mesh.
However, the maximum variation among the three meshes for
the estimated quantities is only 2.42%. Therefore, based on the
above-described mesh dependence tests and in consideration of
the significant computing resources required with the finest mesh,
the medium mesh of 861 � 51 is adopted for all subsequent com-
putations. A time-step dependence test has also been carried out
2 3 Maximum variation
861 � 51 1291 � 76

99.116 98.595 2.29%
0.0778 0.0784 2.42%



Fig. 4. Isotherms at the initial stage f the flow development (conductive effect, Gr = 107, Pr = 7.01, and t = 120 s). The dark arrows represent the direction of the convective
circulation.

Fig. 5. Isotherms at the transitional stage for Gr = 107 and Pr = 7.07. (a) t = 220 s, (b) t = 300 s, (c) t = 400 s, (d) t = 800 s, (e) t = 1200 s, (f) t = 1800 s.
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for the largest Grashof number, and an optimal time-step of 0.2 s is
adopted for the present study.

5. Results and discussion

The random test presented above has revealed linearity of the
flow response to varying perturbation amplitudes over the tested
range. For all the subsequent numerical calculations, a fixed ampli-
tude of perturbations e = 2.0% is adopted. First, the transient flow
development is described in detail for a fixed Grashof number
Gr = 107. Numerical results for different Grashof numbers are then
discussed. Finally, the present numerical data is compared with a
previous scaling prediction of the onset time of instabilities.

5.1. Initial stage flow at 107

Initially, the water in the enclosure is isothermal. As soon as the
surface cooling starts, the heat loss through the water surface re-
sults in a horizontal conductive boundary layer underneath the
water surface, which is seen in Fig. 4. In this and all subsequent fig-
ures, blue1 color always represents relatively cold regions and red
1 For interpretation of the references to colors in all figures, the reader is referred to
the web version of this paper.
color represents relatively warmer regions. Since we consider the
general characteristics of the flow in reservoirs, the isotherms are al-
ways scaled in a way to demonstrate clearly the flow evolution at
different Grashof numbers. It is seen in Fig. 4 that, in the shallow re-
gion, the isotherms curl over in order to satisfy the zero-flux bound-
ary condition on the sloping bottom requiring that the isotherms
become perpendicular to the slope. As a consequence, a temperature
gradient is established along the sloping bottom, which is responsi-
ble for the generation of a convective flow with relatively colder
water flowing down the slope into the deeper regions (the direction
of the convective flow is denoted by the dark arrows in the figure).
Since the surface heat flux is constant, the volumetric cooling rate
decreases with increasing water depth, which results in a horizontal
temperature gradient in the sloping region. The horizontal tempera-
ture gradient further reinforces the convective circulation.

5.2. Transitional stage flow at 107

Shortly after the initialization of the surface cooling, sinking
cold-water plumes originating from the conductive surface layer
can be observed (refer to Fig. 5a). These are due to cooling of the
water body from above which results in the fluid near the surface
becoming denser than that in the interior region. If the cooling is
sufficiently strong, it leads to Rayleigh–Bernard type instabilities,
and the thermals start to descend over the local water depth. The



Fig. 6. Isotherms for Gr = 107 and Pr = 7.07 at t = 8000 s.
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plunging thermals are responsible for the initial mixing of the fluid.
The initial wave-number of the instabilities depends on the local
rate of cooling. Those thermals located closer to the tip will reach
the slopping bottom sooner, and through enhanced mixing, will
accelerate the development of the convective circulation across
the entire flow domain. As time increases, the plumes tend to
merge, creating larger structures. Once these large flow structures
of relatively cold water reach the bottom surface, they are prone to
overturning, as seen in Fig. 5b and c. Sinking thermals in the shal-
low region cool that region quickly, and a cold undercurrent is cre-
ated gradually above the slope as seen in Fig. 5d–f. The
undercurrent slowly proceeds toward the deeper region, being
constantly fed by a return flow of warm water along the surface.

As seen in Fig. 5e, the undercurrent reaches the end of the slop-
ing region. At this moment it is possible to observe three distinct
regions of the flow: the undercurrent on the sloping bottom, a sur-
face return flow which is moving under the water surface toward
the shallow end, and the deep region dominated by large sinking
plumes. The thermals above the slope are becoming weaker and
deformed by the undercurrent.

5.3. Quasi-steady stage flow at Gr = 107

Subsequently, the undercurrent reaches the vertical adiabatic
end-wall, and the flow enters a quasi-steady state. At the quasi-
steady state, the flow is fully developed and the averaged horizon-
tal flow rate remains almost constant. The average temperature of
the entire domain continues to decrease at this stage. Fig. 6 shows
isotherms at the quasi-steady state (t = 8000 s). The relatively sta-
ble undercurrent is easily observed along the bottom. The return
flow, unlike the undercurrent, is very unstable as the surface is
being continuously cooled. Sinking plumes burst intermittently
from the return flow below the water surface.

5.4. Temperature sampling at Gr = 107

Fig. 7 shows the temperature profiles T(y) over the local water
depth y at different horizontal locations x = 0.03, 0.04, 0.06,
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0.085, 0.5, and 1.5 m and at t = 100 s which roughly corresponds
to the estimated onset time of instabilities at Gr = 107 and
Pr = 7.07 (refer to Section 3). An analytical solution for the conduc-
tive temperature profile relevant to the present boundary condi-
tions is given in [19] as follows

TðyÞ ¼ T0 þ 2
H0

kk
kt
p

� �0:5

exp � y2

4kt

� �
þ H0

kk
� y � erfc

y

2ðktÞ0:5

" #

ð12Þ

where k is the thermal conductivity. The theoretical profile is
marked on the plot with filled circles. The analytical solution agrees
very well with the profile computed for the deep fluid region
(x = 1.5 m). The same temperature profile is expected along differ-
ent x positions where the local fluid depth is greater than the thick-
ness of the thermal boundary layer (see for example x = 0.5 in
Fig. 7). At this time, the water temperature at the surface in the
deep region has dropped by about 0.2082 K with respect to its ini-
tial value T0. This can be also confirmed by the theoretical predic-
tion, calculated for t = 100 s and y = 0, using Eq. (12)

DTðtÞ ¼ �2
H0

kk
kt
p

� �0:5

¼ 0:2083 K ð13Þ

The temperature profiles for x = 0.5 and 1.5 m in Fig. 7 suggest that
the conduction boundary layer under the water surface has grown
to a thickness of approximately 15 mm at 100 s. If a critical temper-
ature difference relevant to the thickness of the conductive layer is
reached, the surface layer will become unstable, and convective
instabilities will initiate from the surface layer. For the thermal
layer thickness of 15 mm, the critical temperature difference for
the onset of Rayleigh–Benard type instabilities under the current
flow configuration is estimated to be �0.014 K, and thus the surface
layer is in fact unstable at this time, as evidenced by the increased
standard derivation of the surface temperature shown in Fig. 2(b).
However those instabilities are still very weak at this time and thus
are not discernible in the profiles in Fig. 7.

For a region close to the tip, the thermal boundary layer inter-
sects the bottom and conduction dominates the heat transfer.
293.05 293.10 293.15 293.20
 [K]

ΔT  = 0.208 [K]

pth at different horizontal locations at t = 100 s.
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As a consequence, the temperature difference between the surface
and the bottom decreases towards the tip. Further, since the volu-
metric cooling rate is higher in the tip region, a positive horizontal
temperature gradient is established in this region, as shown in
Fig. 7.

Due to these mechanisms described above, two distinct regions
will be created in the enclosure after the onset of convective insta-
bilities (t > tB): a conductive region close to the tip and a convective
region in deeper areas. These are clearly seen in Fig. 5(a).

Fig. 8(a) shows the temperature time series at five different
water depths (y = 0.0, �0.01, �0.02, �0.05, and �0.09 m) and at a
fixed horizontal location x = 1.0 m for Gr = 107 and Pr = 7.07.

The temperature at the water surface reduces immediately after
the surface cooling begins as expected, and initially follows the
analytical solution for the temperature at y = 0 given by Eq. (13).
At y = �0.01 m the temperature remains essentially at the initial
value until around t = 30 s, at which time it also reduces signifi-
cantly. This time series also follows the analytical solution at
y = �0.01 m, given by Eq. (12). Similar behavior is observed for
the deeper time series; with increasing depth, the time at which
noticeable departure from the initial value is observed increases.
For y = 0 and �0.01 m, the departure is clearly due to the growth
of the thermal boundary layer from the cooling surface. That con-
Fig. 8. Temperature time histories sampled at x = 1.0 m and at different water depths y fo
extended period of flow development. The vertical dashed line indicates the time at wh
clusion is not necessarily true for the deeper time series, as dis-
cussed below.

Around t = 160 s, the surface temperature time series shows a
rapid increase in temperature. At the same time, the temperature
at y = �0.01 m deviates from the analytical solution, also showing
a small increase. These deviations occur at approximately the time
when sinking cold-water plumes are released from the surface
layer, and evidently the variations are due to the presence of the
instabilities. In this case, discrete plunging plumes are carrying
cold fluid from the surface, and the return flow is bringing rela-
tively warm fluid to the surface. These are discrete events, and
the x position at which these time series are taken is in the path
of the return flow, and consequently a temperature rise is ob-
served. However, the time series at the deeper locations are unaf-
fected, and evidently the plumes at this time have not reached
those deeper locations.

As time increases, the deeper locations deviate from their initial
values. These deviations are much faster than would result from
the pure conduction solution, and are the consequence of the pres-
ence of the instabilities. The response of an individual time series
depends on the depth of the plunging plume affecting it or its loca-
tion in the path of either a plunging cold plume or a warm return
flow. For example, there is a clear indication of a plunging plume at
r Gr = 107 and Pr = 7.07. (a) At the initial and early transitional stages and (b) over an
ich the instabilities start to occur.
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approximately t = 260 s which affects all but the deepest location.
At t = 360 s, a plume affects only the surface signal. Weaker indica-
tions of both plunging and rising fluid masses at other times are
also present in the time series. The deviation of the temperature
from the analytical solutions shown in Fig. 8(a) reinforces the con-
clusion that the presence of the instabilities is the dominant mech-
anism providing mixing.

Fig. 8(b) shows the temperature time series taken from the
same locations but over a much longer period of the flow devel-
opment. It can be seen in Fig. 8(b) that the overall temperature
drops consistently with time despite fluctuations caused by the
plunging thermals. The amplitude of the fluctuations due to the
plumes decreases with increasing depth. It is also worth noting
that the time-dependent temperatures in the deeper waters
(y = �0.01, �0.05, and �0.09 m) are at approximately the same
level, which is much higher than the temperature at the water
surface (y = 0 m).

5.5. Dependence on the Grashof number

Fig. 9 shows isotherms in the transitional stage obtained for dif-
ferent Grashof numbers in order to demonstrate the variations of
the characteristics of plunging thermals. It is clear that the transi-
tional flow strongly depends on the Grashof number. As the Gras-
Fig. 9. Isotherms in the transitional state for Pr = 7.07. (a) Gr = 10

Fig. 10. Isotherms in the quasi-steady state for Pr = 7.07. (a) Gr = 104, t = 143,360 s
hof number increases, the plunging thermals appear earlier, and
they become smaller in size, indicating an increase of the wave
number. It is also noticeable in Fig. 9 that a stable conductive re-
gion is present near the tip, and this stable region shrinks with
increasing Grashof number.

Fig. 10 shows isotherms in the quasi-steady stage for four dif-
ferent Grashof numbers: Gr = 104, 105, 106, and 5 � 107, respec-
tively. Although the times selected for presenting the data are
different, the flows are all at comparable stages of development.
Of particular interest is a comparison of the undercurrent and
the surface return flow in each case. When the Grashof number
is low (Gr = 104, Fig. 10a), the undercurrent is thick and stable.
No instabilities in the form of unsteady sinking plumes are ob-
served below the cooling surface. The undercurrent is also stable.
At higher Grashof numbers (Gr = 105 and 106, Fig. 10b and c), the
undercurrent is still relatively stable. However, the surface return
flow is constantly disturbed by sinking plumes. The influence of
the plumes on the undercurrent is relatively weak. For the highest
Grashof number case (Gr = 5 � 107) shown in Fig. 10(d), however,
the undercurrent is noticeably disturbed by the thermals coming
from the above, and the undercurrent separates from the bottom
while interacting with the plumes. The flow maintains the general
characteristics of having two main convective layers. The distur-
bances in the form of sinking plumes result in strong oscillatory
5, t = 2400 s; (b) Gr = 106, t = 680 s; (c) Gr = 5 � 107, t = 100 s.

; (b) Gr = 105, t = 83,880 s; (c) Gr = 106, t = 20,000 s; (d) Gr = 5 � 107, t = 4100 s.
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behavior of the integrated volumetric flow rates, which are plotted
in Fig. 11 for different Grashof numbers. Fig. 11 confirms that the
flow is highly unstable for high Grashof numbers (Gr = 107 and
5 � 107) and relatively stable for lower Grashof numbers
(Gr = 105 and 106). It is clearly seen in this figure that the intensity
of the flow response increases with the Grashof number, that is,
stronger cooling results in faster flow exchange. The three distinct
stages of the flow development described previously, that is, an ini-
tial stage, a transitional stage and a quasi-steady stage can also be
approximately identified in the plotted time series of the volumet-
ric flow rate.

As mentioned above, the convective instabilities in the form of
sinking cold-water plumes depend strongly on the Grashof num-
ber. The instabilities start earlier at higher Grashof numbers. The
onset time of the instabilities can be estimated following the pro-
cedures outlined in [2,5]. According to [2,5], the stratification in the
surface layer is potentially unstable and the instability sets in
when the local Rayleigh number in the surface layer reaches a crit-
ical value of Rac. The local Rayleigh number is obtained as [2,5]:
0
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A comparison of the local Rayleigh number with the critical Ray-
leigh number yields a critical time scale for the onset of the instabil-
ity at given Grashof and Prandtl numbers as:

tB �
Rac

Ra

� �0:5 h2

k
ð15Þ

where Rac� 657.5 [2,20] for the present flow configuration. For
t < tB, the surface layer is stable, and for t > tB, the instability will
set in. The scale (15) indicates that the critical time for the onset
of convective instability in the surface layer increases as the global
Rayleigh number decreases. Fig. 12 plots the onset time of instabil-
ity obtained using the method presented in Section 4.1 against the
scaling prediction of (15). The plot clearly indicates a linear correla-
tion between the predicted and actual onset times. Therefore, the
time scale given by (15) is a good representation of the onset time
of the convective instabilities.
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(rGr  0.5

the predicted critical time of the scaling analysis.
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6. Conclusions

The present work considers the night-time cooling of shallow
waters with a gently sloping bottom. Initially, the water is isother-
mal and stationary in the numerical model. As soon as surface cool-
ing starts, a conduction thermal boundary layer develops
underneath the water surface. The thickness of the thermal layer
increases with time while the temperature in the thermal bound-
ary layer decreases with time. When the local Rayleigh number
in the thermal boundary layer becomes sufficiently high, convec-
tive instabilities in the form of plunging plumes take place.

Numerical tests have been carried out to examine the flow
response to random perturbations of different amplitudes
(strengths). These revealed linearity of the flow response with an
increase of the perturbation amplitude within the specified range.
Following these tests, the transient flow development at different
stages is described in detail, and the effects of the Grashof number
on the flow and instability features are discussed. The present
numerical results have demonstrated that two distinct thermal
layers are formed in the resulting quasi-steady state flow at differ-
ent Grashof numbers: an undercurrent along the bottom and an
unstable return flow immediately under the water surface. Further,
the heat transfer in the tip region is primarily by conduction, with a
corresponding relatively simple flow, whereas in the deeper region
instabilities dominate the flow if the Grashof number is sufficiently
large. In this region, the primary mode of heat transfer is vertical
convection by the resulting plumes. It was also shown that stability
of the undercurrent and return flow strongly depends on the Gras-
hof number.

The unsteady flow structures obtained in the present numerical
simulations have also been observed in our recent experiments
carried out in a reservoir model cooled from above [6], where the
development of an unsteady convection was described based on
experimental flow visualization and quantitative temperature
measurements with thermo-chromic liquid crystals. Although
direct comparisons are not possible since the boundary conditions
for the experiment and numerical cases were different, general
comparisons may be made. The experimental results have con-
firmed the general behavior of the flow development under
night-time cooling conditions which are described in this paper.
The flow visualization of the experiment revealed three stages of
the flow development: the growth of a horizontal thermal bound-
ary layer under the water surface, the initiation of convective insta-
bilities, and further development of the flow with the formation of
an undercurrent and a surface return flow.

Additionally, both the experimental and numerical results indi-
cate that the convective motions in reservoirs induced by night-
time cooling are very important from environmental and ecologi-
cal points of view. Water circulation driven by horizontal thermal
gradients, as presented above, may cause the transport of small
suspended pollutants or biological particles or dissolved constitu-
ents into or from deep-water regions and thus play a significant
role in determining water quality. The present paper however,
considers only convective motions of the water, and a further study
of particle transport, which is beyond the scope of the present
investigation, will help to understand how the relative phase and
motions of particles may be calculated and applied to ecological
transport models.
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